Faster-PestNet: A Lightweight deep learning framework for crop pest detection and classification

نویسندگان

چکیده

One of the most significant risks impacting crops is pests, which substantially decrease food production. Further, prompt and precise recognition pests can help harvesters save damage enhance quality by enabling them to take appropriate preventive action. The apparent resemblance between numerous kinds makes examination laborious takes time. limitations physical pest inspection are required be addressed, a novel deep-learning approach called Faster-PestNet proposed in this work. Descriptively, an improved Faster-RCNN designed using MobileNet as its base network tuned on samples recognize crop various categories given name Fatser-PestNet. Initially, employed for extracting distinctive set sample attributes, later recognized 2-step locator model. We have accomplished huge experimentation analysis over complicated data named IP102 acquired accuracy 82.43%. local dataset also collected tested trained show generalization capacity confirmed through that presented work tackle distortions like noise, blurring, light variations, size alterations accurately locate along with associated class label leaf types sizes. Both visual stated performance values confirm effectiveness our

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

a framework for identifying and prioritizing factors affecting customers’ online shopping behavior in iran

the purpose of this study is identifying effective factors which make customers shop online in iran and investigating the importance of discovered factors in online customers’ decision. in the identifying phase, to discover the factors affecting online shopping behavior of customers in iran, the derived reference model summarizing antecedents of online shopping proposed by change et al. was us...

15 صفحه اول

DL4MD: A Deep Learning Framework for Intelligent Malware Detection

In the Internet-age, malware poses a serious and evolving threat to security, making the detection of malware of utmost concern. Many research efforts have been conducted on intelligent malware detection by applying data mining and machine learning techniques. Though great results have been obtained with these methods, most of them are built on shallow learning architectures, which are still so...

متن کامل

Face Detection using Deep Learning: An Improved Faster RCNN Approach

In this report, we present a new face detection scheme using deep learning and achieve the state-of-the-art detection performance on the well-known FDDB face detetion benchmark evaluation. In particular, we improve the state-of-the-art faster RCNN framework by combining a number of strategies, including feature concatenation, hard negative mining, multi-scale training, model pretraining, and pr...

متن کامل

A Unified Learning Framework for Real Time Face Detection & Classification

This paper presents progress toward an integrated face detection and demographic analysis system that is robust and works in real-time. Faces are detected and extracted using the very fast algorithm recently proposed by Viola & Jones. Detected faces are passed to a novel demographics classifier which uses the same architecture as the face detector. This demographic classifier is extremely fast,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2023

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2023.3317506